Search results

1 – 10 of 14
Article
Publication date: 17 June 2021

Muhammad Taimoor, Xiao Lu, Hamid Maqsood and Chunyang Sheng

The objective of this research is to investigate various neural network (NN) observer techniques for sensors fault identification and diagnosis of nonlinear system in…

Abstract

Purpose

The objective of this research is to investigate various neural network (NN) observer techniques for sensors fault identification and diagnosis of nonlinear system in consideration of numerous faults, failures, uncertainties and disturbances. For the importunity of increasing the faults diagnosis and reconstruction preciseness, a new technique is used for modifying the weight parameters of NNs without enhancement of computational complexities.

Design/methodology/approach

Various techniques such as adaptive radial basis functions (ARBF), conventional radial basis functions, adaptive multi-layer perceptron, conventional multi-layer perceptron and extended state observer are presented. For increasing the fault detection preciseness, a new technique is used for updating the weight parameters of radial basis functions and multi-layer perceptron (MLP) without enhancement of computational complexities. Lyapunov stability theory and sliding-mode surface concepts are used for the weight-updating parameters. Based on the combination of these two concepts, the weight parameters of NNs are updated adaptively. The key purpose of utilization of adaptive weight is to enhance the detection of faults with high accuracy. Because of the online adaptation, the ARBF can detect various kinds of faults and failures such as simultaneous, incipient, intermittent and abrupt faults effectively. Results depict that the suggested algorithm (ARBF) demonstrates more confrontation to unknown disturbances, faults and system dynamics compared with other investigated techniques and techniques used in the literature. The proposed algorithms are investigated by the utilization of quadrotor unmanned aerial vehicle dynamics, which authenticate the efficiency of the suggested algorithm.

Findings

The proposed Lyapunov function theory and sliding-mode surface-based strategy are studied, which shows more efficiency to unknown faults, failures, uncertainties and disturbances compared with conventional approaches as well as techniques used in the literature.

Practical implications

For improvement of the system safety and for avoiding failure and damage, the rapid fault detection and isolation has a great significance; the proposed approaches in this research work guarantee the detection and reconstruction of unknown faults, which has a great significance for practical life.

Originality/value

In this research, two strategies such Lyapunov function theory and sliding-mode surface concept are used in combination for tuning the weight parameters of NNs adaptively. The main purpose of these strategies is the fault diagnosis and reconstruction with high accuracy in terms of shape as well as the magnitude of unknown faults. Results depict that the proposed strategy is more effective compared with techniques used in the literature.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 18 December 2019

Muhammad Taimoor and Li Aijun

The purpose of this paper is to propose an adaptive neural-sliding mode-based observer for the estimation and reconstruction of unknown faults and disturbances for time-varying…

Abstract

Purpose

The purpose of this paper is to propose an adaptive neural-sliding mode-based observer for the estimation and reconstruction of unknown faults and disturbances for time-varying nonlinear systems such as aircraft, to ensure preciseness in the diagnosis of fault magnitude as well as the shape without enhancement of system complexity and cost. Fault-tolerant control (FTC) strategy based on adaptive neural-sliding mode is also proposed in the existence of faults for ensuring the stability of the faulty system.

Design/methodology/approach

In this paper, three strategies are presented: adaptive radial basis functions neural network (ARBFNN), conventional radial basis functions neural network (CRBFNN) and integral-chain differentiator. For the purpose of enhancement of fault diagnosis and isolation, a new sliding mode-based concept is introduced for the weight updating parameters of radial basis functions neural network (RBFNN).The main objective of updating the weight parameters adaptively is to enhance the effectiveness of fault diagnosis and isolation without increasing the computational complexities of the system. Results depict the effectiveness of the proposed ARBFNN approach in fault detection (FD) and approximation compared to CRBFNN, integral-chain differentiator and schemes existing in literature. In the second step, the FTC strategy is presented separately for each observer in the presence of unknown faults and failures for ensuring the stability of the system, which is validated on Boeing 747 100/200 aircraft.

Findings

The proposed adaptive neural-sliding mode approach is investigated, which depicts more effectiveness in numerous situations such as faults, disturbances and uncertainties compared to algorithms used in literature. In this paper, both the fault approximation and isolation and the fault tolerance approaches are studied.

Practical implications

For the enhancement of safety level as well as for avoiding any kind of damage, timely FD and fault tolerance have always had a significant role; therefore, the algorithms proposed in this research ensure the tolerance of faults and failures, which plays a vital role in practical life for avoiding any kind of damage.

Originality/value

In this study, a new neural-sliding mode concept is adopted for the adaptive faults approximation and reconstruction, and then the FTC algorithms are studied for each observer separately, whereas in previous studies, only the fault detection and isolation (FDI) or the fault tolerance problems were studied. Results demonstrate the effectiveness of the proposed strategy compared to the approaches given in the literature.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 18 October 2018

Yang Tingting, Li Aijun, Muhammad Taimoor and Rooh ul Amin

The purpose of this paper is to propose a high angle of attack short landing model for switched polytopic systems as well as to derive an equation for fluidic thrust vector…

Abstract

Purpose

The purpose of this paper is to propose a high angle of attack short landing model for switched polytopic systems as well as to derive an equation for fluidic thrust vector deflection angle based on pressure to reduce the velocity during the landing phase of flight.

Design/methodology/approach

In this paper, robust control algorithm is proposed for a non-linear high angle of attack aircraft under the effects of non-linearities, tottering hysteresis, irregular and wing rock atmosphere. High angle of attack short landing flight under asynchronous switching is attained by using the robust controller method. Lyapunov function and the average dwell time scheme is used for obtaining the switched polytopic scheme. The asynchronous switching and loss of data are controlled asymptotically. The velocity of aircraft has been lucratively reduced during the landing phase of flight by using the robust controller technique.

Findings

The proposed algorithm based on robust controller including the effects of non-linearities guarantee the successful reduction of velocity for high angle of attack switched polytopic systems.

Practical implications

As the landing phase of an aircraft is one of the complicated stage, this algorithm plays a vital role in stable and short landing under the condition of high angle of attack (AOA).

Originality/value

In this paper, not only the velocity of flight has been reduced, but also the high angle of attack has been attained during the landing phase, because of which the duration of landing has been reduced as well, while in most of the previous research, it is based on low angle of attack and long landing duration.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 August 2018

Muhammad Taimoor, Li Aijun, Rooh ul Amin and Hongshi Lu

The purpose of this paper is to design linear quadratic regulator (LQR) based Luenberger observer for the estimation of unknown states of aircraft.

Abstract

Purpose

The purpose of this paper is to design linear quadratic regulator (LQR) based Luenberger observer for the estimation of unknown states of aircraft.

Design/methodology/approach

In this paper, the LQR-based Luenberger observer is deliberated for autonomous level flight of unmanned aerial vehicle (UAV) which has been attained productively. Various modes like phugoid and roll modes are exploited for controlling the rates of UAV. The Luenberger observer is exploited for estimation of the mysterious states of the system. The rates of roll, yaw and pitch are used as an input to the observer, while the remaining states such as velocities and angles have been anticipated. The main advantage of using Luenberger observer was to reduce the cost of the system which has been achieved lucratively. The Luenberger observer proposes sturdiness at the rate of completion to conquest over the turmoil and insecurities to overcome the privileged recital. The FlightGear simulator is exploited for the endorsement of the recital of the Luenberger observer-based autopilot. The level flight has been subjugated lucratively and has been legitimated by exploiting the FlightGear simulator. The authenticated and the validated results are offered in this paper. Microsoft Visual Studio has been engaged as a medium between the MATLAB and FlightGear Simulator.

Findings

The suggested observer based on LQR ensures the lucrative approximation of the unknown states of the system as well as the successful level flight of the system. The Luenberger observer is used for approximation of states while LQR is used as controller.

Originality/value

In this research work, not only the estimation of unknown states of both longitudinal and lateral model is made but also the level flight is achieved by using those estimated states and the autopilot is validated by using the FlightGear, while in most of the research work only the estimation is made of only longitudinal or lateral model.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 11 February 2019

Muhammad Taimoor, Li Aijun and Rooh ul Amin

The purpose of this paper aims to investigate an effective algorithm for different types of disturbances rejection. New dynamics are designed based on disturbance. Observer-based…

Abstract

Purpose

The purpose of this paper aims to investigate an effective algorithm for different types of disturbances rejection. New dynamics are designed based on disturbance. Observer-based sliding mode control (SMC) technique is used for approximation the disturbances as well as to stabilize the system effectively in presence of uncertainties.

Design/methodology/approach

This research work investigates the disturbances rejection algorithm for fixed-wing unmanned aerial vehicle. An algorithm based on SMC is introduced for disturbances rejection. Two types of disturbances are considered, the constant disturbance and the sinusoidal disturbance. The comprehensive lateral and longitudinal models of the system are presented. Two types of dynamics, the dynamics without disturbance and the new dynamics with disturbance, are presented. An observer-based algorithm is presented for the estimation of the dynamics with disturbances. Intensive simulations and experiments have been performed; the results not only guarantee the robustness and stability of the system but the effectiveness of the proposed algorithm as well.

Findings

In previous research work, new dynamics based on disturbances rejection are not investigated in detail; in this research work both the lateral and longitudinal dynamics with different disturbances are investigated.

Practical implications

As the stability is always important for flight, so the algorithm proposed in this research guarantees the robustness and rejection of disturbances, which plays a vital role in practical life for avoiding any kind of damage.

Originality/value

In the previous research work, new dynamics based on disturbances rejection are not investigated in detail; in this research work both the lateral and longitudinal dynamics with different disturbances are investigated. An observer-based SMC not only approximates the different disturbances and also these disturbances are rejected in order to guarantee the effectiveness and robustness.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Case study
Publication date: 25 June 2021

Muhammad Fareed and Sadaf Taimoor

Learn the application of important strategy frameworks such as PESTLE, SWOT and Porter’s five forces. Understand the theoretical underpinnings of services marketing and learn the…

Abstract

Learning outcomes

Learn the application of important strategy frameworks such as PESTLE, SWOT and Porter’s five forces. Understand the theoretical underpinnings of services marketing and learn the art of developing service blueprints. Critically evaluate the use of change management strategies to induce behavioral change among employees. Appreciate the balance that social enterprises need to achieve between their commercial and social impact goals. Critically evaluate the decision of outsourcing core competencies.

Case overview/synopsis

In 2019, Abbas Jaffery and Sumair Saleem, founders of Washup, Pakistan, a young venture providing on-demand, high-quality and cost-effective laundry service faced a critical management dilemma as their supply chain collapsed due to a rampant surge in demand. The demand surge had been the outcome of Washup’s effort to push its services to the customers by getting vetted by a social media influencer. However, the duo was caught off guard when their supply chain could not meet the sudden increase in demand. The hesitant behavior of the informal workers to join hands with Washup had not only cost Washup this management nightmare but even left the duo at wits ends to develop a strategy that would help gain business idea acceptance from the grass root workers to whom the core competencies of washing and ironing were being outsourced. This case is a rich description of the nuances of operating an unconventional social enterprise in an emerging market and gives an insight on how behavioral change among key workers is critical in ensuring the success of ventures.

Complexity academic level

This case is geared toward undergraduate students enrolled in courses of entrepreneurship, strategy and services marketing.

Supplementary materials

Teaching Notes are available for educators only.

Subject code

CSS 11: Strategy.

Details

Emerald Emerging Markets Case Studies, vol. 11 no. 1
Type: Case Study
ISSN: 2045-0621

Keywords

Article
Publication date: 17 June 2019

Arif Hussain, Muhammad Yousaf Malik, Mair Khan and Taimoor Salahuddin

The purpose of current flow configuration is to spotlights the thermophysical aspects of magnetohydrodynamics (MHD) viscoinelastic fluid flow over a stretching surface.

Abstract

Purpose

The purpose of current flow configuration is to spotlights the thermophysical aspects of magnetohydrodynamics (MHD) viscoinelastic fluid flow over a stretching surface.

Design/methodology/approach

The fluid momentum problem is mathematically formulated by using the Prandtl–Eyring constitutive law. Also, the non-Fourier heat flux model is considered to disclose the heat transfer characteristics. The governing problem contains the nonlinear partial differential equations with appropriate boundary conditions. To facilitate the computation process, the governing problem is transmuted into dimensionless form via appropriate group of scaling transforms. The numerical technique shooting method is used to solve dimensionless boundary value problem.

Findings

The expressions for dimensionless velocity and temperature are found and investigated under different parametric conditions. The important features of fluid flow near the wall, i.e. wall friction factor and wall heat flux, are deliberated by altering the pertinent parameters. The impacts of governing parameters are highlighted in graphical as well as tabular manner against focused physical quantities (velocity, temperature, wall friction factor and wall heat flux). A comparison is presented to justify the computed results, it can be noticed that present results have quite resemblance with previous literature which led to confidence on the present computations.

Originality/value

The computed results are quite useful for researchers working in theoretical physics. Additionally, computed results are very useful in industry and daily-use processes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Abstract

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 1
Type: Research Article
ISSN: 2633-6596

Open Access
Article
Publication date: 2 August 2019

Mair Khan, T. Salahuddin, Muhammad Malik Yousaf, Farzana Khan and Arif Hussain

The purpose of the current flow configurations is to bring to attention the thermophysical aspects of magnetohydrodynamics (MHD) Williamson nanofluid flow under the effects of…

1428

Abstract

Purpose

The purpose of the current flow configurations is to bring to attention the thermophysical aspects of magnetohydrodynamics (MHD) Williamson nanofluid flow under the effects of Joule heating, nonlinear thermal radiation, variable thermal coefficient and activation energy past a rotating stretchable surface.

Design/methodology/approach

A mathematical model is examined to study the heat and mass transport analysis of steady MHD Williamson fluid flow past a rotating stretchable surface. Impact of activation energy with newly introduced variable diffusion coefficient at the mass equation is considered. The transport phenomenon is modeled by using highly nonlinear PDEs which are then reduced into dimensionless form by using similarity transformation. The resulting equations are then solved with the aid of fifth-order Fehlberg method.

Findings

The rotating fluid, heat and mass transport effects are analyzed for different values of parameters on velocity, energy and diffusion distributions. Parameters like the rotation parameter, Hartmann number and Weissenberg number control the flow field. In addition, the solar radiation, Joule heating, Prandtl number, thermal conductivity, concentration diffusion coefficient and activation energy control the temperature and concentration profiles inside the stretching surface. It can be analyzed that for higher values of thermal conductivity, Eckret number and solar radiation parameter the temperature profile increases, whereas opposite behavior is noticed for Prandtl number. Moreover, for increasing values of temperature difference parameter and thermal diffusion coefficient, the concentration profile shows reducing behavior.

Originality/value

This paper is useful for researchers working in mathematical and theoretical physics. Moreover, numerical results are very useful in industry and daily-use processes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 December 2021

Mati Ullah, Chunhui Zhao, Hamid Maqsood, Mahmood Ul Hassan and Muhammad Humayun

This paper aims to design an adaptive nonlinear strategy capable of timely detection and reconstruction of faults in the attitude’s sensors of an autonomous aerial vehicle with…

Abstract

Purpose

This paper aims to design an adaptive nonlinear strategy capable of timely detection and reconstruction of faults in the attitude’s sensors of an autonomous aerial vehicle with greater accuracy concerning other conventional approaches in the literature.

Design/methodology/approach

The proposed scheme integrates a baseline nonlinear controller with an improved radial basis function neural network (IRBFNN) to detect different kinds of anomalies and failures that may occur in the attitude’s sensors of an autonomous aerial vehicle. An integral sliding mode concept is used as auto-tune weight update law in the IRBFNN instead of conventional weight update laws to optimize its learning capability without computational complexities. The simulations results and stability analysis validate the promising contributions of the suggested methodology over the other conventional approaches.

Findings

The performance of the proposed control algorithm is compared with the conventional radial basis function neural network (RBFNN), multi-layer perceptron neural network (MLPNN) and high gain observer (HGO) for a quadrotor vehicle suffering from various kinds of faults, e.g. abrupt, incipient and intermittent. From the simulation results obtained, it is found that the proposed algorithm’s performance in faults detection and estimation is relatively better than the rest of the methodologies.

Practical implications

For the improvement in the stability and safety of an autonomous aerial vehicle during flight operations, quick identification and reconstruction of attitude’s sensor faults and failures always play a crucial role. Efficient fault detection and estimation scheme are considered indispensable for an error-free and safe flight mission of an autonomous aerial vehicle.

Originality/value

The proposed scheme introduces RBFNN techniques to detect and estimate the quadrotor attitude’s sensor faults and failures efficiently. An integral sliding mode effect is used as the network’s backpropagation law to automatically modify its learning parameters accordingly, thereby speeding up the learning capabilities as compared to the conventional neural network backpropagation laws. Compared with the other investigated techniques, the proposed strategy achieve remarkable results in the detection and estimation of various faults.

Details

International Journal of Intelligent Unmanned Systems, vol. 11 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

1 – 10 of 14